1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
| #include <cstdio> #include <iostream> #include <cmath> #include <algorithm> using namespace std; typedef long long ll; typedef double db; const db eps = 1e-10; const db pi = acos(-1.0); const ll inf = 0x3f3f3f3f3f3f3f3f; const ll maxn = 1e3 + 10;
inline int dcmp(db x) { if(fabs(x) < eps) return 0; return x > 0? 1: -1; }
class Point { public: double x, y; Point(double x = 0, double y = 0) : x(x), y(y) {} inline void input() { scanf("%lf%lf", &x, &y); } bool operator<(const Point &a) const { return (!dcmp(x - a.x))? dcmp(y - a.y) < 0: x < a.x; } bool operator==(const Point &a) const { return dcmp(x - a.x) == 0 && dcmp(y - a.y) == 0; } db dis2(const Point a) { return pow(x - a.x, 2) + pow(y - a.y, 2); } db dis(const Point a) { return sqrt(dis2(a)); }
db dis2() { return x * x + y * y; } db dis() { return sqrt(dis2()); } Point operator+(const Point a) { return Point(x + a.x, y + a.y); } Point operator-(const Point a) { return Point(x - a.x, y - a.y); } Point operator*(double p) { return Point(x * p, y * p); } Point operator/(double p) { return Point(x / p, y / p); } db dot(const Point a) { return x * a.x + y * a.y; } db cross(const Point a) { return x * a.y - y * a.x; } db ang(Point a) { return acos((a.dis() * dis()) / dot(a)); } }; typedef Point Vector;
Point p[maxn], ip[maxn];
class Line { public: Point s, e; db angle; Line() {} Line(Point s, Point e) : s(s), e(e) {} inline void input() { s.input();e.input(); } bool operator<(const Line &a) const { Line l = a; if(dcmp(angle - l.angle) == 0) { return l.toLeftTest(s) == 1; } return angle < l.angle; } void get_angle() { angle = atan2(e.y - s.y, e.x - s.x); } int toLeftTest(Point p) { if((e - s).cross(p - s) > 0) return 1; else if((e - s).cross(p - s) < 0) return -1; return 0; } int linecrossline(Line l) { if(dcmp((e - s).cross(l.e - l.s)) == 0) { if(dcmp((l.s - e).cross(l.e - s)) == 0) { return 0; } return 1; } return 2; } Point crosspoint(Line l) { db a1 = (l.e - l.s).cross(s - l.s); db a2 = (l.e - l.s).cross(e - l.s); db x = (s.x * a2 - e.x * a1) / (a2 - a1); db y = (s.y * a2 - e.y * a1) / (a2 - a1); if(dcmp(x) == 0) x = 0; if(dcmp(y) == 0) y = 0; return Point(x, y); } };
Line l[maxn], q[maxn];
db half_plane(int cnt) { sort(l + 1, l + 1 + cnt); int tmp = 1; for(int i = 2; i <= cnt; ++i) { if(dcmp(l[i].angle - l[tmp].angle) == 1) l[++tmp] = l[i]; } cnt = tmp; int head = 1, tail = 2; q[1] = l[1], q[2] = l[2]; for(int i = 3; i <= cnt; ++i) { while(head < tail && l[i].toLeftTest(q[tail].crosspoint(q[tail - 1])) == -1) { --tail; } while(head < tail && l[i].toLeftTest(q[head].crosspoint(q[head + 1])) == -1) { ++head; } q[++tail] = l[i]; }
while(head < tail && q[head].toLeftTest(q[tail].crosspoint(q[tail - 1])) == -1) { --tail; } while(head < tail && q[tail].toLeftTest(q[head].crosspoint(q[head + 1])) == -1) { ++head; }
if(tail - head + 1 <= 2) { return 0.0; }
tmp = 0; for(int i = head; i < tail; ++i) { ip[++tmp] = q[i].crosspoint(q[i + 1]); } ip[++tmp] = q[head].crosspoint(q[tail]); db ans = 0; for(int i = 3; i <= tmp; ++i) { ans += (ip[i - 1] - ip[1]).cross(ip[i] - ip[1]); } return ans * 0.5; }
int main() { int T; scanf("%d", &T); while(T--) { int n; scanf("%d", &n); int cnt = 0; for(int i = 1; i <= n; ++i) { p[i].input(); } for(int i = n - 1; i >= 1; --i) { l[++cnt].e = p[i]; l[cnt].s = p[i + 1]; l[cnt].get_angle(); } l[++cnt].e = p[n]; l[cnt].s = p[1]; l[cnt].get_angle(); printf("%.2lf\n", half_plane(cnt)); } return 0; }
|