Codeforces Round #384 (Div. 2)
题目链接:Vladik and fractions
Vladik and Chloe decided to determine who of them is better at math. Vladik claimed that for any positive integer $n$ he can represent fraction $\frac{2}{n}$ as a sum of three distinct positive fractions in form $\frac{1}{m}$.
Help Vladik with that, i.e for a given $n$ find three distinct positive integers $x, y$ and $z$ such that $\frac{2}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$. Because Chloe can’t check Vladik’s answer if the numbers are large, he asks you to print numbers not exceeding $10^9$.
If there is no such answer, print $-1$.
Input
The single line contains single integer $n (1 \le n \le 10^4)$.
Output
If the answer exists, print 3 distinct numbers $x, y$ and $z (1 \le x, y, z \le 10^9, x \neq y, x \neq z, y \neq z)$. Otherwise print $-1$.
If there are multiple answers, print any of them.
Examples
input
3
output
2 7 42
input
7
output
7 8 56
Solution
题意
给定一个正整数 $n$,求正整数 $x,y,z$ 满足 $\frac{2}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$。
其中 $x \neq y, x \neq z, y \neq z$。若无解输出 $-1$。
题解
构造
当 $n=1$ 时,$\frac{2}{n}=2$。而 $(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})_{max} = \frac{1}{1}+\frac{1}{2}+\frac{1}{3} < 2$,所以当 $n=1$ 时无解。
Code
1 |
|