0%

HDU 6590 Code (判断凸包相交)

2019 杭电多校 1 1013

题目链接:HDU 6590

比赛链接:2019 Multi-University Training Contest 1

Problem Description

After returning with honour from ICPC(International Cat Programming Contest) World Finals, Tom decides to say goodbye to ICPC and start a new period of life. He quickly gets interested in AI.

In the subject of Machine Learning, there is a classical classification model called perceptron, defined as follows:

Assuming we get a set of training samples: $D={(\boldsymbol{x_1},y_1),(\boldsymbol{x_2},y_2),…,(\boldsymbol{x_N},y_N)}$, with their inputs $\boldsymbol{x}\in \mathbb{R}^d$, and outputs $y\in \{−1,1\}$. We will try to find a function $f(\boldsymbol{x})=sign(\sum_{i=1}^d w_i\cdot x_i+b)=sign(\boldsymbol{w^T} \cdot \boldsymbol{x}+b)$ so that $f(\boldsymbol{x_i})=y_i,i=1,2,…,N$.

$\boldsymbol{w}, \boldsymbol{x}$ mentioned above are all d-dimensional vectors, i.e. $\boldsymbol{w}=(w_1,w_2,…,w_d), \boldsymbol{x}=(x_1,x_2,…,x_d)$. To simplify the question, let $w_0=b$, $x_0=1$, then $f(\boldsymbol{x})=sign(\sum_{i = 0}^d w_i\cdot x_i)=sign(\boldsymbol{w^T}\cdot \boldsymbol{x})$. Therefore, finding a satisfying function $f(\boldsymbol{x})$ is equivalent to finding a proper $\boldsymbol{w}$.

To solve the problem, we have a algorithm, PLA(Popcorn Label Algorithm).

Accoding to PLA, we will randomly generate $\boldsymbol{w}$.

If $f(\boldsymbol{x})=sign(\boldsymbol{w^T}\cdot \boldsymbol{x})$ fails to give any element $(\boldsymbol{x_i},y_i)\in D$ the right classification, i.e. $f(\boldsymbol{x_i})\neq y_i$, then we will replace $w$ with another random vector. We will do this repeatedly until all the samples $\in D$ are correctly classified.

As a former-JBer, Tom excels in programming and quickly wrote the pseudocode of PLA.

  w := a random vector
  while true do
      flag:=true
      for i:=1 to N do
          if f(x[ i ]) != y[ i ] then
              flag:=false
              break
      if flag then
          break
      else
          w := a random vector
  return w

But Tom found that, in some occasions, PLA will end up into an infinite loop, which confuses him a lot. You are required to help Tom determine, when performed on a given sample set $D$, if PLA will end up into an infinite loop. Print Infinite loop! if so, or Successful! otherwise.

We only consider cases when $d=2$ for simplification.

Note:

Input

The first line contains an integer $T(1\le T\le 1000)$, the number of test cases.

Each test case begins with a line containing a single integer $n(1\le n\le 100)$, size of the set of training samples $D$.

Then $n$ lines follow, the ith of which contains three integers $x_{i,1},x_{i,2},y_i (−10^5\le x_{i,1},x_{i,2}\le 10^5, y_i\in {−1,1})$, indicating the ith sample $(x_i,y_i)$ in $D$, where $x_i=(x_{i,1},x_{i,2})$.

Output

For each test case, output a single line containing the answer: “Infinite loop!” or “Successful!”.

Sample Input

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
3
2
1 1 1
2 0 -1
4
0 0 1
2 0 -1
1 1 1
1 -1 -1
6
0 0 1
2 0 -1
1 1 1
1 -1 -1
1 0 1
0 1 -1

Sample Output

1
2
3
Successful!
Successful!
Infinite loop!

Solution

题意

给出两类点的坐标,问能否用一条直线将两类点分开。

题解

题目看懂了就很好做了。

就是分别对两类点求凸包,然后判断两个凸包是否相交。若不相交,则能够用一条直线分开两类点,否则不能。

其实就是判断凸包是否相交的模板题。

类似的题目有:

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#include <bits/stdc++.h>
using namespace std;
const double eps = 1e-8;
const double pi = acos(-1.0);
class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
Point operator+(Point a) {
return Point(a.x + x, a.y + y);
}
Point operator-(Point a) {
return Point(x - a.x, y - a.y);
}
bool operator<(const Point &a) const {
if (x == a.x)
return y < a.y;
return x < a.x;
}
bool operator==(const Point &a) const {
if (fabs(x - a.x) < eps && fabs(y - a.y) < eps)
return 1;
return 0;
}
double length() {
return sqrt(x * x + y * y);
}
};

typedef Point Vector;

double cross(Vector a, Vector b) {
return a.x * b.y - a.y * b.x;
}

double dot(Vector a, Vector b) {
return a.x * b.x + a.y * b.y;
}

bool isclock(Point p0, Point p1, Point p2) {
Vector a = p1 - p0;
Vector b = p2 - p0;
if (cross(a, b) < -eps)
return true;
return false;
}

double getDistance(Point a, Point b) {
return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
}

typedef vector<Point> Polygon;
Polygon Andrew(Polygon s) {
Polygon u, l;
if(s.size() < 3) return s;
sort(s.begin(), s.end());
u.push_back(s[0]);
u.push_back(s[1]);
l.push_back(s[s.size() - 1]);
l.push_back(s[s.size() - 2]);
for(int i = 2 ; i < s.size() ; ++i) {
for(int n = u.size() ; n >= 2 && !isclock(u[n - 2], u[n - 1], s[i]); --n) {
u.pop_back();
}
u.push_back(s[i]);
}
for(int i = s.size() - 3 ; i >= 0 ; --i) {
for(int n = l.size() ; n >=2 && !isclock(l[n-2],l[n-1],s[i]); --n) {
l.pop_back();
}
l.push_back(s[i]);
}
for(int i = 1 ; i < u.size() - 1 ; i++) l.push_back(u[i]);
return l;
}

int dcmp(double x) {
if (fabs(x) <= eps)
return 0;
return x > 0 ? 1 : -1;
}

// 判断点在线段上
bool OnSegment(Point p, Point a1, Point a2) {
return dcmp(cross(a1 - p, a2 - p)) == 0 && dcmp(dot(a1 - p, a2 - p)) < 0;
}

// 判断线段相交
bool Intersection(Point a1, Point a2, Point b1, Point b2) {
double c1 = cross(a2 - a1, b1 - a1), c2 = cross(a2 - a1, b2 - a1),
c3 = cross(b2 - b1, a1 - b1), c4 = cross(b2 - b1, a2 - b1);
return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
}

// 判断点在凸包内
int isPointInPolygon(Point p, vector<Point> s) {
int wn = 0, cc = s.size();
for (int i = 0; i < cc; i++) {
Point p1 = s[i];
Point p2 = s[(i + 1) % cc];
if (p1 == p || p2 == p || OnSegment(p, p1, p2)) return -1;
int k = dcmp(cross(p2 - p1, p - p1));
int d1 = dcmp(p1.y - p.y);
int d2 = dcmp(p2.y - p.y);
if (k > 0 && d1 <= 0 && d2 > 0) wn++;
if (k < 0 && d2 <= 0 && d1 > 0) wn--;
}
if (wn != 0) return 1;
return 0;
}

void solve(Polygon s1, Polygon s2) {
int c1 = s1.size(), c2 = s2.size();
for(int i = 0; i < c1; ++i) {
if(isPointInPolygon(s1[i], s2)) {
printf("Infinite loop!\n");
return;
}
}
for(int i = 0; i < c2; ++i) {
if(isPointInPolygon(s2[i], s1)) {
printf("Infinite loop!\n");
return;
}
}
for (int i = 0; i < c1; i++) {
for (int j = 0; j < c2; j++) {
if (Intersection(s1[i], s1[(i + 1) % c1], s2[j], s2[(j + 1) % c2])) {
printf("Infinite loop!\n");
return;
}
}
}
printf("Successful!\n");
}

int main() {
int T;
cin >> T;
while (T--) {
int n;
scanf("%d", &n);
Polygon s1, s2;
for (int i = 0; i < n; ++i) {
double x1, x2, y;
scanf("%lf%lf%lf", &x1, &x2, &y);
if(y == 1) {
s1.push_back(Point(x1, x2));
} else {
s2.push_back(Point(x1, x2));
}
}
if(n == 1) {
printf("Successful!\n");
continue;
}
if(s1.size()) s1 = Andrew(s1);
if(s2.size()) s2 = Andrew(s2);
solve(s1, s2);
}
return 0;
}

欢迎关注我的其它发布渠道