题目链接:POJ 3641
Description
Fermat’s theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Input
Input contains several test cases followed by a line containing “0 0”. Each test case consists of a line containing p and a.
Output
For each test case, output “yes” if p is a base-a pseudoprime; otherwise output “no”.
Sample input
1 | 3 2 |
Sample output
1 | no |
Solution
题意
给定 $p$ 和 $a$,判断 $p$ 是否为合数且满足 $a^p\equiv a(mod p)$。
题解
水题 快速幂 + 素数判断
Code
1 |
|